Size-tunable synthesis of stable superparamagnetic iron oxide nanoparticles for potential biomedical applications.
نویسندگان
چکیده
Dextran-coated superparamagnetic nanoparticles (MNPs) have widespread biomedical applications. The superparamagnetic behavior, specifically regulated size, and smooth morphology are crucial requirements for essentially all of these applications. Presented herein is an innovative double-coating strategy that would allow for a size-controlled synthesis of MNPs. Small monocrystalline iron oxide nanoparticles (MIONs) were first synthesized, which served as the source of superparamagnetic properties. These MIONs were then treated in an acetate buffer containing biocompatible dextran polymer. Under such an environment, the colloidal MIONs would be quickly agglomerated by the acetate ions, and the formed coalescent body of MION would then be stabilized simultaneously by coating with dextran. By regulating the MION or dextran concentration as well as the thermal incubation time, the sizes of these first formed nanoparticles (termed 1st-NPs) could be readily controlled. A second dextran coating step was further applied to smoothen the 1st-NPs in attaining a final product (termed 2nd-NPs). The 2nd-NPs exhibited robust storage stability because of the additional coating shell. Results successfully confirmed the plausibility of this approach, as these MNPs displayed not only a smooth outline and a narrow size distribution but also the essential superparamagnetic behavior and a significantly prolonged stability on storage.
منابع مشابه
Preparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application
Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...
متن کاملPreparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application
Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...
متن کاملTunability of Size and Magnetic Moment of Iron Oxide Nanoparticles Synthesized by Forced Hydrolysis
To utilize iron oxide nanoparticles in biomedical applications, a sufficient magnetic moment is crucial. Since this magnetic moment is directly proportional to the size of the superparamagnetic nanoparticles, synthesis methods of superparamagnetic iron oxide nanoparticles with tunable size are desirable. However, most existing protocols are plagued by several drawbacks. Presented here is a one-...
متن کاملPVA and EDTA grafted superparamagnetic Ni doped iron oxide nanoparticles prepared by constant current electrodeposition for biomedical applications
In this paper, a rapid and room temperature electrochemical method is introduced in preparationof Ni doped iron oxide nanoparticles (Ni-IONs) grafted with ethylenediaminetetraacetic acid (EDTA)and polyvinyl alcohol (PVA). EDTA/Ni-IONs and PVA/Ni-IONs samples were prepared through baseelectro-generation on the cathode surface from aqueous solution of iron(II) chloride, iron(III...
متن کاملPreparation and characterization of PEG/Dextran coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical applications
Recent progress in nanotechnology and electrochemical methods can be applied to fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. Here we appliedcathodic electrochemical deposition (CED) as an efficient and effective tactic for synthesisand double coating of surface of superparamagnetic iron oxide nanoparticles (SPIONs). In first step, bare Fe3O4 n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره 92 4 شماره
صفحات -
تاریخ انتشار 2010